Surname	Centre Number	Candidate Number
Other Names		0

GCSE

4493/02

CHEMISTRY

CHEMISTRY 3 HIGHER TIER

A.M. THURSDAY, 19 May 2016

1 hour

For Ex	For Examiner's use only				
Question	Maximum Mark	Mark Awarded			
1.	8				
2.	7				
3.	9				
4.	6				
5.	10				
6.	7				
7.	7				
8.	6				
Total	60				

ADDITIONAL MATERIALS

In addition to this paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

Assessment will take into account the quality of written communication (QWC) used in your answers to questions **3**(*a*) and **8**.


The Periodic Table is printed on the back cover of the examination paper and the formulae for some common ions on the inside of the back cover.

[2]

Answer all questions.

1. In the Haber process, nitrogen reacts with hydrogen to give ammonia.

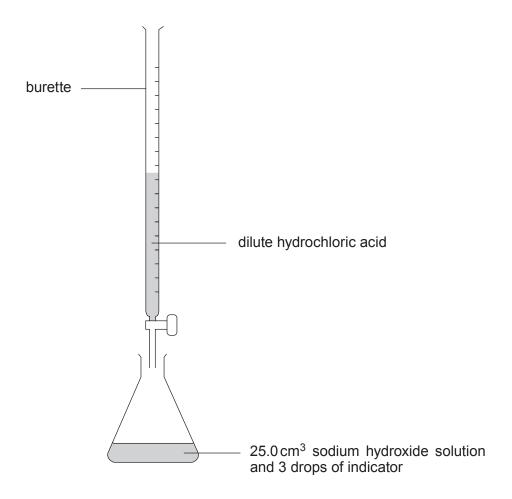
The following graphs show the effect of changing pressure on the yield of ammonia at 300 $^{\circ}\text{C}$ and 500 $^{\circ}\text{C}$.

The table shows the percentage yield of ammonia at various pressures at 400 °C.

Pressure (atm)	0	100	200	300	400	500
Yield of ammonia (%)	0	22	37	44	49	51

(a)	Plot the points on the grid above and draw a suitable line.	
-----	---	--

(b)	Using the graphs,	state the	temperature	and press	ure which	produce the	e highest y	yield of
	ammonia.							[1]


atm		°C and		atm
-----	--	--------	--	-----

(c)	State	e what conclusions can be drawn from the graphs.	[2]	Examiner only
(d)	(i)	Complete and balance the following equation for the production of ammonia. $N_2 + $	[2]	
	(ii)	State the meaning of \rightleftharpoons in the equation in part (i).	[1]	
				8

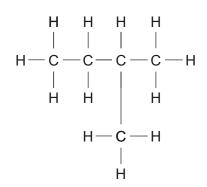
2. The diagram shows the apparatus that was used to find the volume of hydrochloric acid needed to neutralise 25.0 cm³ of sodium hydroxide solution.

The balanced equation for the reaction between sodium hydroxide and hydrochloric acid is as follows.

NaOH + HCl
$$\longrightarrow$$
 NaCl + H $_2$ O

The acid was added slowly from the burette. The volume of acid needed to change the indicator colour was recorded.

The titration was carried out four times and the volume of acid added each time was recorded in the table below.


Run	1	2	3	4
Volume of hydrochloric acid (cm ³)	33.5	29.5	29.6	29.4

(a)	State	e why an indicator was used in this experiment. [1]	Examiner only
(b)	State	e whether the acid or the alkali is the more concentrated. Give a reason for your ver.	
(c)	(i)	Calculate the mean volume of hydrochloric acid needed to neutralise 25.0 cm ³ of the sodium hydroxide solution. [1]	
	(ii) 	Mean =cm ³ Using all the information provided and your mean volume, describe how a pure sample of sodium chloride crystals could be made. [4]	4493

(a)	You have been given three gases, A , B and C . The gases are carbon dio and oxygen, but not necessarily in that order.	xide, hydrogen
	Describe the tests for carbon dioxide, hydrogen and oxygen and plan a me gases A , B and C without using all three tests.	ethod to identify [6 QWC]
(b)	When a mixture of sodium hydroxide solution and ammonium chloride is a given off.	neated a gas i
	(i) Name the gas.	L4.
	(i) Name the gas.	[1]

4.		n samples of calcium carbonate and copper(II) carbonate are heated they undergo thermal mposition.	only
	(a)	Describe one similarity and one difference in the reactions that take place when these two carbonates thermally decompose. [2]	
	(b)	Give the balanced symbol equation for the reaction that takes place when calcium carbonate is heated. [2]	
	(c)	If the two carbonates were replaced with sodium carbonate, what would be the difference when this was heated? Give a reason for this difference. [2]	
			4493

5. A-F are the structural formulae for some organic compounds.

Α

В

C

D

Ε

F

[1]

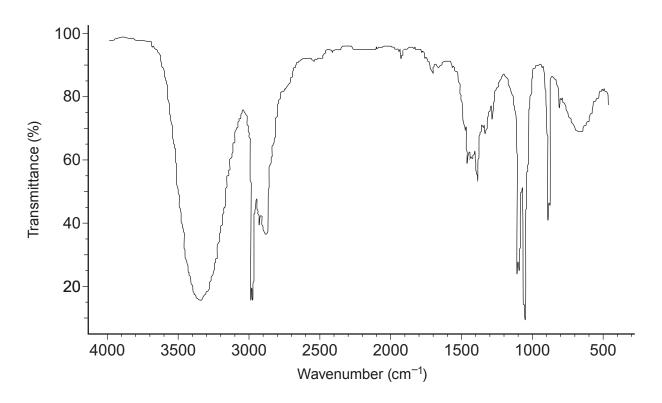
[2]

(a) Give the letters of the two structural formulae that are identical.

.....and

(b) State which structural formula is **incorrect**. Give a reason for your answer.

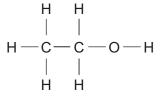
(c)	Draw the structural formula of the isomer of $\mathrm{C}_5\mathrm{H}_{12}$ not shown opposite.	[1]	Examiner only
(d)	Describe a chemical test to distinguish between compounds C and E .	[3]	


(e) Infrared spectroscopy is a method used to identify bonds present in organic compounds.

The table below shows the wavenumber range at which some bonds absorb infrared light.

Bond	Wavenumber (cm ⁻¹)
О—Н	3700-3200
С—Н	3200-2800
c=o	1800-1650
c=c	1700-1600
c—o	1250-1000

Examiner only


Compound **X** gave the following infrared spectrum.

State which of the following compounds ${\bf X}$ could be. Give ${\bf two}$ reasons for your choice. [3]

H	H
H-C	-C-H
1	
Н	Н
e i	hane

H H | C = C | H H H ethene

ethanol

Examin	е
only	

6.	A sol	ution i	is suspected to be iron(II) sulfate, FeSO ₄ .		Oi
	(a)	(i)	Describe how sodium hydroxide solution could be used to show the presence iron(II) ions.	of [2]	
		(ii)	Give the balanced ionic equation for the reaction that takes place.	[3]	
			+		
	(b)	Desc	cribe how you could test for the presence of sulfate ions in iron(II) sulfate.	[2]	

7. The concentration of sodium hydroxide solution can be determined by titration.

 $25.0\,\mathrm{cm^3}$ of $0.10\,\mathrm{mol/dm^3}$ sulfuric acid were placed in a conical flask and titrated with sodium hydroxide solution. It was found that $21.5\,\mathrm{cm^3}$ of sodium hydroxide were required to neutralise the acid.

The equation for the reaction between sodium hydroxide and sulfuric acid is as shown.

$$2NaOH + H2SO4 \longrightarrow Na2SO4 + 2H2O$$

(a) Calculate the number of moles of sulfuric acid in 25.0 cm³ of 0.10 mol/dm³ solution. [2]

Number of moles of sulfuric acid = mol

(b) Calculate the number of moles of sodium hydroxide in 21.5 cm³ of solution. [1]

Number of moles of sodium hydroxide = mol

(c) Calculate the concentration of the sodium hydroxide solution. [2]

Concentration of sodium hydroxide = mol/dm³

(d) A reaction between the same solutions of sodium hydroxide and sulfuric acid can produce a different salt called sodium hydrogensulfate as shown in the following equation.

$$NaOH + H_2SO_4 \longrightarrow NaHSO_4 + H_2O$$

State the volume of sodium hydroxide solution needed to react with 25.0 cm³ of 0.10 mol/dm³ sulfuric acid to give sodium hydrogensulfate. Give your reasoning. [2]

Volume = cm³

8.	Describe how sulfur is converted into sulfuric acid in the contact process. Include equations in your account. [6 QWC]	Examiner only

END OF PAPER

_

FORMULAE FOR SOME COMMON IONS

POSITIV	E IONS	NEGATIV	/E IONS
Name	Formula	Name	Formula
Aluminium	Al ³⁺	Bromide	Br ⁻
Ammonium	NH_4^+	Carbonate	CO ₃ ²⁻
Barium	Ba ²⁺	Chloride	CI ⁻
Calcium	Ca ²⁺	Fluoride	F ⁻
Copper(II)	Cu ²⁺	Hydroxide	OH ⁻
Hydrogen	H⁺	lodide	I ⁻
lron(II)	Fe ²⁺	Nitrate	NO ₃ -
lron(III)	Fe ³⁺	Oxide	O^{2-}
Lithium	Li ⁺	Sulfate	SO ₄ ²⁻
Magnesium	Mg ²⁺		
Nickel	Ni ²⁺		
Potassium	K ⁺		
Silver	Ag^{+}		
Sodium	Na⁺		
Zinc	Zn ²⁺		

© WJEC CBAC Ltd. (4493-02) Turn over.

PERIODIC TABLE OF ELEMENTS

_	7					Gro	roup					က	4	2	9	7	0
																	⁴ ₂ He
								Hydrogen									Helium
⁷ Li	⁹ Be						-					1. B	12 C	N 2 2	16 0 8	19 T	²⁰ Ne
Lithium	Beryllium											Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
23 Na	24 Mg	ı										27 AI	28 Si	31 P	32 S	35 CI	40 Ar
Sodium	Magnesium											Aluminium	Silicon	Phosphorus	Sulfur	Chlorine	Argon
39 K	40 Ca	45 SC 21	48 Ti	51 V 23	52 Cr	55 Mn	⁵⁶ Fe	⁵⁹ Co	59 Ni	64 29 Cu	65 Zn 30 Zn	70 Ga	73 Ge 32 Ge	75 AS	⁷⁹ ₃₄ Se	80 Br	84 Kr 36 Kr
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
86 Rb	88 38 Sr	89 ★	91 Zr	93 Nb	96 42 Mo	99 TC	101 Ru	103 Rh	106 Pd 46 Pd	108 Ag	112 Cd 48 Cd	115 In 49 In	119 Sn 50 Sn	122 Sb	128 Te	127	¹³¹ Xe ₅₄
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Ξ	Antimony	Tellurium	lodine	Xenon
133 Cs 55	137 Ba 56	139 La 57 La	179 Hf	¹⁸¹ Ta	184 W	186 Re 75	190 OS	192 	195 Pt	197 Au	201 Hg	204 TI	²⁰⁷ Pb	209 Bi	²¹⁰ Po	²¹⁰ ₈₅ At	²²² Rn
Caesium	Barium	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
223 Fr 87	226 Ra 88	²²⁷ ₈₉ Ac															
Francium	Radium	Actinium			Key:												
					Mass	Mass number		∠									
					Atom	Atomic number	Jer	^ ^	×	– Eleme	Element Symbol	lod					
						<u>:</u> : :	5	1 S	Name								

© WJEC CBAC Ltd.

(4493-02)